Chapter 1: Introduction

Shiwen Shen
University of South Carolina
\section*{2017 Summer I}

What Is Statistics?

Definition: Statistics is the science of data; how to interpret data, analyze data, and design studies to collect data.

- Statisics is used in all disciplines; not just in engineering.
- "Statistics get to play in everyone else's back yard." (John Tukey)
- John Tukey: https://en.wikipedia.org/wiki/John_Tukey

Statistics Examples

1. In a reliability (time to failure) study, engineers are interested in describing the time until failure for a electronic device.
2. In an agricultural experiment, researchers want to know which of four fertilizers produces the highest corn yield.
3. In a clinical trial, physicians want to determine which of two drugs is more effective for treating HIV in the early stages of the disease.
4. In a social network analysis, researchers want to know the group patterns among all the users.

What Do Statisticians Do?

- Statisticians use their skills in mathematics and computing to formulate statistical models and analyze data for a specific problem at hand.
- Models are then used to estimate important quantities of interest, to test the validity of proposed conjectures, and to predict future behavior.
- Being able to identify and model sources of variability is an important part of statistics.

Example: Variability Matters!

Suppose that I am trying to predict

$$
Y=\text { MATH } 141 \text { final score }
$$

for incoming freshmen enrolled in MATH 141. I randomly sample 50 freshmen students and for each of them, I will record the following variables:

$$
x_{1}=\text { SAT MATH score }
$$

and

$$
x_{2}=\text { high school GPA }
$$

Example: Variability Matters! (cont.)

A deterministic model would take the form

$$
Y=f\left(x_{1}, x_{2}\right)
$$

where $f()$ is a function of x_{1} and x_{2}. $(f()$ could be linear or in other shape.) This model suggests that for a student with values x_{1} and x_{2}, we would compute Y exactly if the function f was known. For example,

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
$$

Clearly, this is not realistic.

Example: Variability Matters! (cont.)

A statistical model for Y might look like something like this:

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

where ϵ is a term that accounts for not only measurement error but also

1. all of the other variables not accounted for (e.g. major, difficulty of exam, study habits, etc).
2. the error induced by assuming a linear relationship between Y and x_{1} and x_{2}.

Example: Variability Matters! (cont.)

Discussion 1:

- Is this sample of students representative of some larger population? After all, we would like our model/predictions to be useful on a larger scale (and not simply for these 50 students).
- This is the idea behind statistical inference. We would like to use sample information to make statements about a larger (relevant) population.

Example: Variability Matters! (cont.)

Discussion 2:

- How sould we estimate β_{0}, β_{1}, and β_{2} in the model above?
- If we can do this, then we can produce predictions of Y on a student-by-student basis (e.g. for future students, etc.)
- This may be of interest to academic advisers who are trying to model the success of their incoming students.
- We can also characterize numerical uncertainty with our predictions.
- Probability is the "mathematics of unvertainty" and forms the basis for all of statistics.

Who Is Engineer?

An engineer is someone who solves problems of interest to society by the efficient application of scientific principles. The steps in the engineering method are as follows:

1. Develop a clear and concise description of the problem.
2. Identify the important factors that affect this problem.
3. Propose a model for the problem, using scientific or engineering knowledge of the phenomenon being studied.
4. Conduct appropriate experiments and collect data to test the model proposed.
5. Refine the model on the basis of the observed data.
6. Manipulate the model to assist in developing a solution to the problem, and draw the conclusion if possible.
